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Subtracting these two power series gives
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|QUICK CHECK 5 Verify that the power
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converge at the endpoints x = +1.
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This power series is the difference of two power series, both of which converge on the
interval |x| < 1. Therefore, by Theorem 9.4, the new series also converges on |x| < 1.

Related Exercises 39-44 <

If you look carefully, every example in this section is ultimately based on the geomet-
ric series. Using this single series, we were able to develop power series for many other
functions. Imagine what we could do with a few more basic power series. The following

section accomplishes precisely that end. There, we discover basic power series for all the
standard functions of calculus.

SECTION 9.2 EXERCISES
Review Questions

L. Write the first four terms of a power series with coefficients Cos €1,
€3, ¢ centered at 0.

2. Write the first four terms of a power series with coefficients ¢y, ¢,
¢y, c3 centered at 3.

3. What tests are used to determine the radius of convergence of a
power series?

4. Explain why a power series is tested for absolute convergence.

5. Do the interval and radius of convergence of a power series
change when the series is differentiated or integrated? Explain.

6. What is the radius of convergence of the power series ¢y (x/2)
if the radius of convergence of S, x* is R?

1. What is the interval of convergence of the power series S(4x)?

8 How are the radii of convergence of the power series 3¢, x* and
2(~1)* ¢, x* related?

Basic Skl

=20, Interval and radius of convergence Determine the radius of
8ence of the Jollowing power series. Then test the endpoints to

- Mine the interval of convergence.
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21-26. Combining power series Use the geomelric series

flx) =

1 [e]
= >xk  forlx| <1,
I-x %

to find the power series representation for the Jollowing functions (cen-
tered at 0). Give the interval of convergence of the new series.

1 e
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2x° 1
23, 7 = g, iy =
l(x) 1 —x 4 f(x) e xa
12
25, - ' - _
p(x) { =g 26. f(—4x) e

27-32. Combining power series Use the power series representation

f(x)=ln(1—x)=“2%’

k=1

for=lL=u <1,

to find the power series for the following Junctions (centered at 0).
Give the interval of convergence of the new series.

27. f(3x) =In(1 - 3x) 28. g(x) = x*In(l — x)
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" 65. Product of power series Let

flx) = ick 2 and g(x) = idkx”.
=0 =0

a. Multiply the power series together as if they were polynomials,
collecting all terms that are multiples of 1, x, and x% Write the
first three terms of the product f(x)g(x).

b. Find a general expression for the coefficient of x in the prod-
uct series, forn = 0,1, 2,....

66. Inverse sine Given the power series
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[ 67. Computing with power series Consider the following function
and its power series:

flx) = “{l—_lx—)g = > ka7,

fof =1 << o <11,
k=1

a. Let S, (x) be the first n terms of the series. Withn = 5
and n = 10, graph f(x) and S, (x) at the sample points

x=-09,-08,...,-0.1,0,0.1,...,0.8, 0.9 (two graphs).
Where is the difference in the graphs the greatest?
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> Maclaurip series are named after the
& ltish mathematician Colin Maclaurin
(169}3—1745), who described them (with
1 redit o Taylor) in a textbook in 1742.
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—xE

=1+2x+ o T
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for =1 < x < 1, find the power series for f(x) =

9.3 Taylor Serics

b. What value of n is needed to guarantee that
S, (x)| < 0.01 at all of the sample points?

|QUICK CHECK ANSWERS |
= 1 _l
RTS8 1. g(0) = 0 2. For any value of x with x > 6 or x < =2
the series diverges by the Divergence Test. The Root or Ratio Test
gives the same result. 3. |x| < LR =1 4. Substituting
x=1/2,In(1/2) = -In2 = ~2%.
=12%

In the preceding section we saw that a power series represents a function on its interval of
convergence. This section explores the opposite question: Given a function, what is its
power series representation? We have already made significant progress in answering this
question because we know how Taylor polynomials are used to approximate functions. We

now extend Taylor polynomials to produce power series—called Taylor series—that pro-
vide series representations of functions.

Taylor Series for a Function

Suppose a function f has derivatives f%)(a) of all orders at the point a. If we write the
Taylor polynomial of degree n for f centered at a and allow 7 to increase indefinitely, a

power series is obtained. The power series consists of a Taylor polynomial of order n plus
terms of higher degree called the remainder:

CU -+ Cl(x = a) + (,‘z(x »—-a)z + e C"(x - a)ﬂ + C"+1(x _a)”-f-i de sy

Taylor polynomial of order n

remainder

I
Mg

Bl ~ @)

k=0

The coefficients of the Taylor polynomial are given by

K a
Ck=fk’( ), fork=0,l,2,....

These coefficients are also the coefficients of the power series. Furthermore, this power
series has the same matching properties as the Taylor polynomials; that is, the function f
and the power series agree in all of their derivatives at a. This power series is called the
Taylor series for f centered at . It is the natural extension of the set of Taylor polynomi-
als for f at a. The special case of a Taylor series centered at 0 is called a Maclaurin series.




